Polymer crystallization-driven, periodic patterning on carbon nanotubes.

نویسندگان

  • Lingyu Li
  • Christopher Y Li
  • Chaoying Ni
چکیده

We report herein a unique means to periodically pattern polymeric materials on individual carbon nanotubes (CNTs) using a controlled polymer crystallization method. One-dimensional (1D) CNTs were periodically decorated with polymer lamellar crystals, resulting in nano-hybrid shish-kebab (NHSK) structures. The periodicity of the polymer lamellae varies from 20 to 150 nm. The kebabs are approximately 5-10 nm thick (along CNT direction) with a lateral size of approximately 20 nm to micrometers, which can be readily controlled by varying crystallization conditions. Both polyethylene and Nylon 66 were successfully decorated on single-walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs), as well as vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to "size-dependent soft epitaxy". Because NHSK formation conditions depend on CNT structures, it further provides a unique opportunity for CNT separation. The reported method opens a gateway to periodically patterning polymers and different functional groups on individual CNTs in an ordered and controlled manner, an attractive research field that is yet to be explored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Functionalization on the Crystallization Behavior of MWNT-PBT Nanocomposites

There is tremendous interest in using low loadings of multiwalled carbon nanotubes (MWNTs) to enhance the multifunctional properties of polymers, with functionalization often pursued to increase the dispersion and effective reinforcement of MWNTs within the polymer. In our interest to understand the effect of MWNT functionalization on Poly (butylene terephthalate) (PBT) crystallization kinetics...

متن کامل

Deformation-induced crystallization and associated morphology development of carbon nanotube-PVDF nanocomposites.

Poly(vinylidene fluoride) (PVDF) is a semicrystalline thermoplastic polymer that is of interest for sensor, actuator and biomedical applications because of its piezoelectric and pyroelectric properties, as well as outstanding mechanical and chemical properties. Although it is known that the shear-induced crystallization behavior of nanocomposites can be significantly affected by the presence of...

متن کامل

Structure and magnetic properties of multi-walled carbon nanotubes modified with iron

Related Articles Oscillatory characteristics of carbon nanotubes inside carbon nanotube bundles J. Appl. Phys. 112, 124310 (2012) High-voltage electric-field-induced growth of aligned “cow-nipple-like” submicro-nano carbon isomeric structure via chemical vapor deposition J. Appl. Phys. 112, 114310 (2012) Probing molecular interactions on carbon nanotube surfaces using surface plasmon resonance ...

متن کامل

Effect of the Type of Carbon Nanotubes on Tribological Properties of Polyamide 6

Multiwalled carbon nanotubes have been synthesized by catalytic chemical vapor deposition of ethylene, using two different catalysts in order to obtain nanotubes with average diameters of 24 and 58 nm, and different lengths. Polyamide 6 (PA6) was reinforced by melt-mixing in an extruder with 2 wt% functionalized and unfunctionalized carbon nanotubes (CNTs). The nanocomposites were characterized...

متن کامل

Effects of Multiwalled Carbon Nanotubes on the Shear-Induced Crystallization Behavior of Poly(butylene terephthalate)

The effects of the incorporation of multiwalled carbon nanotubes (MWNT) with a diameter range of 10-30 nm on the shear-induced crystallization behavior of poly(butylene terephthalate) (PBT) were investigated under myriad shearing and loading conditions employing principally the small-amplitude oscillatory shear flow. Upon shearing, the presence of MWNTs leads to the crystallization of the PBT n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 5  شماره 

صفحات  -

تاریخ انتشار 2006